ColumnStore Shared Local Storage
Overview
Software Version
Diagram
Features
Enterprise Server 10.5
Enterprise Server 10.6
Enterprise Server 11.4
Columnar storage engine with S3-compatible object storage
Highly available
Automatic failover via MaxScale and CMAPI
Scales reads via MaxScale
Bulk data import
Enterprise Server 10.5, Enterprise ColumnStore 5, MaxScale 2.5
Enterprise Server 10.6, Enterprise ColumnStore 23.02, MaxScale 22.08
This procedure describes the deployment of the ColumnStore Shared Local Storage topology with MariaDB Enterprise Server 10.5, MariaDB Enterprise ColumnStore 5, and MariaDB MaxScale 2.5.
MariaDB Enterprise ColumnStore 5 is a columnar storage engine for MariaDB Enterprise Server 10.5. Enterprise ColumnStore is suitable for Online Analytical Processing (OLAP) workloads.
This procedure has 9 steps, which are executed in sequence.
This procedure represents basic product capability and deploys 3 Enterprise ColumnStore nodes and 1 MaxScale node.
This page provides an overview of the topology, requirements, and deployment procedures.
Please read and understand this procedure before executing.
Procedure Steps
Prepare ColumnStore Nodes
Configure Shared Local Storage
Install MariaDB Enterprise Server
Start and Configure MariaDB Enterprise Server
Test MariaDB Enterprise Server
Install MariaDB MaxScale
Start and Configure MariaDB MaxScale
Test MariaDB MaxScale
Import Data
Support
Customers can obtain support by submitting a support case.
Components
The following components are deployed during this procedure:
Component
Function
Modern SQL RDBMS with high availability, pluggable storage engines, hot online backups, and audit logging.
Database proxy that extends the availability, scalability, and security of MariaDB Enterprise Servers
MariaDB Enterprise Server Components
Component
Description
• Columnar storage engine • Highly available • Optimized for Online Analytical Processing (OLAP) workloads • Scalable query execution • Cluster Management API (CMAPI) provides a REST API for multi-node administration.
MariaDB MaxScale Components
Component
Description
Listener
Listens for client connections to MaxScale then passes them to the router service
MariaDB Monitor
Tracks changes in the state of MariaDB Enterprise Servers.
Read Connection Router
Routes connections from the listener to any available Enterprise ColumnStore node
Read/Write Split Router
Routes read operations from the listener to any available Enterprise ColumnStore node, and routes write operations from the listener to a specific server that MaxScale uses as the primary server
Server Module
Connection configuration in MaxScale to an Enterprise ColumnStore node
Topology
The MariaDB Enterprise ColumnStore topology with Object Storage delivers production analytics with high availability, fault tolerance, and limitless data storage by leveraging S3-compatible storage.
The topology consists of:
One or more MaxScale nodes
An odd number of ColumnStore nodes (minimum of 3) running ES, Enterprise ColumnStore, and CMAPI
The MaxScale nodes:
Monitor the health and availability of each ColumnStore node using the MariaDB Monitor (mariadbmon)
Accept client and application connections
Route queries to ColumnStore nodes using the Read/Write Split Router (readwritesplit)
The ColumnStore nodes:
Receive queries from MaxScale
Execute queries
Use shared local storage for the Storage Manager directory
Requirements
These requirements are for the ColumnStore Object Storage topology when deployed with MariaDB Enterprise Server 10.5, MariaDB Enterprise ColumnStore 5, and MariaDB MaxScale 2.5.
Node Count
Operating System
Minimum Hardware Requirements
Recommended Hardware Requirements
Storage Requirements
S3-Compatible Object Storage Requirements
Preferred Object Storage Providers: Cloud
Preferred Object Storage Providers: Hardware
Shared Local Storage Directories
Shared Local Storage Options
Recommended Storage Options
Node Count
MaxScale nodes, 1 or more are required.
Enterprise ColumnStore nodes, 3 or more are required for high availability. You should always have an odd number of nodes in a multi-node ColumnStore deployment to avoid split brain scenarios.
Operating System
In alignment to the enterprise lifecycle, the ColumnStore Object Storage topology with MariaDB Enterprise Server 10.5, MariaDB Enterprise ColumnStore 5, and MariaDB MaxScale 2.5 is provided for:
CentOS Linux 7 (x86_64)
Debian 10 (x86_64)
Red Hat Enterprise Linux 7 (x86_64)
Red Hat Enterprise Linux 8 (x86_64)
Ubuntu 18.04 LTS (x86_64)
Ubuntu 20.04 LTS (x86_64)
Minimum Hardware Requirements
MariaDB Enterprise ColumnStore's minimum hardware requirements are not intended for production environments, but the minimum hardware requirements can be appropriate for development and test environments. For production environments, see the recommended hardware requirements instead.
The minimum hardware requirements are:
Component
CPU
Memory
MaxScale node
4+ cores
4+ GB
Enterprise ColumnStore node
4+ cores
4+ GB
MariaDB Enterprise ColumnStore will refuse to start if the system has less than 3 GB of memory.
If Enterprise ColumnStore is started on a system with less memory, the following error message will be written to the ColumnStore system log called crit.log:
Apr 30 21:54:35 a1ebc96a2519 PrimProc[1004]: 35.668435 |0|0|0| C 28 CAL0000: Error total memory available is less than 3GB.
And the following error message will be raised to the client:
ERROR 1815 (HY000): Internal error: System is not ready yet. Please try again.
Recommended Hardware Requirements
MariaDB Enterprise ColumnStore's recommended hardware requirements are intended for production analytics.
The recommended hardware requirements are:
Component
CPU
Memory
MaxScale node
8+ cores
16+ GB
Enterprise ColumnStore node
64+ cores
128+ GB
Storage Requirements
The ColumnStore Object Storage topology requires the following storage types:
Storage Type
Description
The ColumnStore Object Storage topology uses shared local storage for the Storage Manager directory to store metadata.
Shared Local Storage Directories
The ColumnStore Object Storage topology uses shared local storage for the Storage Manager directory to store metadata.
The Storage Manager directory is located at the following path by default:
/var/lib/columnstore/storagemanager
Shared Local Storage Options
The most common shared local storage options for the ColumnStore Object Storage topology are:
EBS (Elastic Block Store) Multi-Attach
AWS
• EBS is a high-performance block-storage service for AWS (Amazon Web Services). • EBS Multi-Attach allows an EBS volume to be attached to multiple instances in AWS. Only clustered file systems, such as GFS2, are supported. • For deployments in AWS, EBS Multi-Attach is a recommended option for the Storage Manager directory, and Amazon S3 storage is the recommended option for data.
EFS (Elastic File System)
AWS
• EFS is a scalable, elastic, cloud-native NFS file system for AWS (Amazon Web Services). • For deployments in AWS, EFS is a recommended option for the Storage Manager directory, and Amazon S3 storage is the recommended option for data. EFS is a scalable, elastic, cloud-native NFS file system for AWS (Amazon Web Services).
Filestore
GCP
• Filestore is high-performance, fully managed storage for GCP (Google Cloud Platform). • For deployments in GCP, Filestore is the recommended option for the Storage Manager directory, and Google Object Storage (S3-compatible) is the recommended option for data.
GlusterFS
On-premises
• GlusterFS is a distributed file system. • GlusterFS supports replication and failover.
NFS (Network File System)
On-premises
• NFS is a distributed file system. • If NFS is used, the storage should be mounted with the sync option to ensure that each node flushes its changes immediately. • For on-premises deployments, NFS is the recommended option for the Storage Manager directory, and any S3-compatible storage is the recommended option for data.
Enterprise ColumnStore Management with CMAPI
Enterprise ColumnStore's CMAPI (Cluster Management API) is a REST API that can be used to manage a multi-node Enterprise ColumnStore cluster.
Many tools are capable of interacting with REST APIs. For example, the curl utility could be used to make REST API calls from the command-line.
Many programming languages also have libraries for interacting with REST APIs.
The examples below show how to use the CMAPI with curl.
URL Endpoint Format for REST API
https://{server}:{port}/cmapi/{version}/{route}/{command}
For example:
Required Request Headers
'x-api-key'
: '93816fa66cc2d8c224e62275bd4f248234dd4947b68d4af2b29671dd7d5532dd''Content-Type'
: 'application/json'
x-api-key can be set to any value of your choice during the first call to the server. Subsequent connections will require this same key.
Get Status
$ curl -k -s https://mcs1:8640/cmapi/0.4.0/cluster/status \
--header 'Content-Type:application/json' \
--header 'x-api-key:93816fa66cc2d8c224e62275bd4f248234dd4947b68d4af2b29671dd7d5532dd' \
| jq .
Start Cluster
$ curl -k -s -X PUT https://mcs1:8640/cmapi/0.4.0/cluster/start \
--header 'Content-Type:application/json' \
--header 'x-api-key:93816fa66cc2d8c224e62275bd4f248234dd4947b68d4af2b29671dd7d5532dd' \
--data '{"timeout":20}' \
| jq .
Stop Cluster
$ curl -k -s -X PUT https://mcs1:8640/cmapi/0.4.0/cluster/shutdown \
--header 'Content-Type:application/json' \
--header 'x-api-key:93816fa66cc2d8c224e62275bd4f248234dd4947b68d4af2b29671dd7d5532dd' \
--data '{"timeout":20}' \
| jq .
Add Node
$ curl -k -s -X PUT https://mcs1:8640/cmapi/0.4.0/cluster/node \
--header 'Content-Type:application/json' \
--header 'x-api-key:93816fa66cc2d8c224e62275bd4f248234dd4947b68d4af2b29671dd7d5532dd' \
--data '{"timeout":20, "node": "192.0.2.2"}' \
| jq .
Remove Node
$ curl -k -s -X DELETE https://mcs1:8640/cmapi/0.4.0/cluster/node \
--header 'Content-Type:application/json' \
--header 'x-api-key:93816fa66cc2d8c224e62275bd4f248234dd4947b68d4af2b29671dd7d5532dd' \
--data '{"timeout":20, "node": "192.0.2.2"}' \
| jq .
Quick Reference
MariaDB Enterprise Server Configuration Management
Method
Description
Configuration File
Configuration files (such as /etc/my.cnf) can be used to set system-variables and options. The server must be restarted to apply changes made to configuration files.
Command-line
The server can be started with command-line options that set system-variables and options.
SQL
Users can set system-variables that support dynamic changes on-the-fly using the SET statement.
MariaDB Enterprise Server packages are configured to read configuration files from different paths, depending on the operating system. Making custom changes to Enterprise Server default configuration files is not recommended because custom changes may be overwritten by other default configuration files that are loaded later.
To ensure that your custom changes will be read last, create a custom configuration file with the z- prefix in one of the include directories.
CentOS
Red Hat Enterprise Linux (RHEL)
/etc/my.cnf.d/z-custom-mariadb.cnf
Debian
Ubuntu
/etc/mysql/mariadb.conf.d/z-custom-mariadb.cnf
MariaDB Enterprise Server Service Management
The systemctl command is used to start and stop the MariaDB Enterprise Server service.
Start
sudo systemctl start mariadb
Stop
sudo systemctl stop mariadb
Restart
sudo systemctl restart mariadb
Enable during startup
sudo systemctl enable mariadb
Disable during startup
sudo systemctl disable mariadb
Status
sudo systemctl status mariadb
For additional information, see "Starting and Stopping MariaDB".
MariaDB Enterprise Server Logs
MariaDB Enterprise Server produces log data that can be helpful in problem diagnosis.
Log filenames and locations may be overridden in the server configuration. The default location of logs is the data directory. The data directory is specified by the datadir system variable.
Enterprise ColumnStore Service Management
The systemctl command is used to start and stop the ColumnStore service.
Start
sudo systemctl start mariadb-columnstore
Stop
sudo systemctl stop mariadb-columnstore
Restart
sudo systemctl restart mariadb-columnstore
Enable during startup
sudo systemctl enable mariadb-columnstore
Disable during startup
sudo systemctl disable mariadb-columnstore
Status
sudo systemctl status mariadb-columnstore
In the ColumnStore Object Storage topology, the mariadb-columnstore service should not be enabled. The CMAPI service restarts Enterprise ColumnStore as needed, so it does not need to start automatically upon reboot.
Enterprise ColumnStore CMAPI Service Management
The systemctl command is used to start and stop the CMAPI service.
Start
sudo systemctl start mariadb-columnstore-cmapi
Stop
sudo systemctl stop mariadb-columnstore-cmapi
Restart
sudo systemctl restart mariadb-columnstore-cmapi
Enable during startup
sudo systemctl enable mariadb-columnstore-cmapi
Disable during startup
sudo systemctl disable mariadb-columnstore-cmapi
Status
sudo systemctl status mariadb-columnstore-cmapi
For additional information on endpoints, see "CMAPI".
MaxScale Configuration Management
MaxScale can be configured using several methods. These methods make use of MaxScale's REST API.
Command-line utility to perform administrative tasks through the REST API. See MaxCtrl Commands.
MaxGUI is a graphical utility that can perform administrative tasks through the REST API.
The REST API can be used directly. For example, the curl utility could be used to make REST API calls from the command-line. Many programming languages also have libraries to interact with REST APIs.
The procedure on these pages configures MaxScale using MaxCtrl.
MaxScale Service Management
The systemctl command is used to start and stop the MaxScale service.>
Start
sudo systemctl start maxscale
Stop
sudo systemctl stop maxscale
Restart
sudo systemctl restart maxscale
Enable during startup
sudo systemctl enable maxscale
Disable during startup
sudo systemctl disable maxscale
Status
sudo systemctl status maxscale
For additional information, see "Start and Stop Services".
Next Step
Navigation in the procedure Shared Local Storage topology
Next: Step 1: Prepare ColumnStore Nodes.
This page is: Copyright © 2025 MariaDB. All rights reserved.
Last updated
Was this helpful?